CS, Econ, Math and Everything in Between

Aadityan Ganesh Princeton University

Chapter-1: Computer Science

Go and explain your daughter that you are proving LOWER BOUNDs on the speed at which a computer can solve a given problem. Pull your hair crazily when she asks why you would want to do such a thing: don't you want the computer to be as fast as possible?

The Pen-Testing Problem [Qiao and Valiant 2023]

- n pens with unknown ink levels
- Ink level v_i of pen i comes from distribution D_i
- Want to pick a pen with largest ink level

The Pen-Testing Problem [Qiao and Valiant 2023]

- n pens with unknown ink levels
- Ink level v_i of pen i comes from distribution D_i
- Want to pick a pen with largest ink level
- Write pen i for time t_i
- If v_i > t_i, we know pen i had more than t_i units of ink at the start
- If $v_i \le t_i$, we know pen i has run out of ink

The Pen-Testing Problem [Qiao and Valiant 2023]

- n pens with unknown ink levels
- Ink level v_i of pen i comes from distribution D_i
- Want to pick a pen with largest residual ink level

- Write pen i for time t_i
- If v_i > t_i, we know pen i had more than t_i units of ink at the start
- If $v_i \le t_i$, we know pen i has run out of ink

Ink is irrevocably used up while testing

Applications- Light Bulbs

- Light bulbs either good or faulty
- Faulty bulbs tend to go off within a day or two
- Good bulbs last longer than a month
- Choose best 100 out of 300 bulbs?

Application- Light Bulbs

- Light bulbs either good or faulty
- Faulty bulbs tend to go off within a day or two
- Good bulbs last longer than a month
- Choose best 100 out of 300 bulbs?
- Leave bulbs on for two days
 - Faulty bulbs fuse by then
 - Good bulbs lose two days of their lifetime

Example

- 2 pens
 - 30 minutes ink wp ½
 - 1 minute ink wp ½
- Select 1 pen

Example

- 2 pens
 - 30 minutes ink wp ½
 - 1 minute ink wp ½
- Select 1 pen

- Write both pens for 1 minute. If any pen did not dry up, pick it
 - Get 29 minutes ink if some pen does not dry up

Example

- 2 pens
 - o 30 minutes ink wp ½
 - 1 minute ink wp ½
- Select 1 pen
- Write both pens for 1 minute. If any pen did not dry up, pick it
 - Get 29 minutes ink if some pen does not dry up
- Average ink
 - $0 \frac{1}{2} \times \frac{1}{2} \times 0 + (1 \frac{1}{2} \times \frac{1}{2}) \times 29 = 21.75$

Fancier Feasibility Constraints

- Knapsack:
 - Pens have sizes and ink levels
 - Can pick any set of pens as long as they fit your pouch

Fancier Feasibility Constraints

- Knapsack:
 - Pens have sizes and ink levels
 - Can pick any set of pens as long as they fit your pouch

- Generally:
 - A feasibility set F of subsets of pens
 - Can choose any set of pens from F
 - Eg: {{1, 2, 4}, {1, 3, 4}, {2, 3, 4}}

Application- Team Selection

- Select a cricket team
 - 6 batters/4 bowlers/1 all-rounder
 - 3 pacers/2 spinners
 - o etc
- Select team by judging performance in domestic games and net sessions
 - Too many sessions lead to burnt-out players and bad performance for the team

Goal- Come Up with a "Good" Pen Testing Algorithm

- What is a "good" pen testing algorithm?
 - Show no pen-testing algorithm can do better (or only marginally better)

Goal- Come Up with a "Good" Pen Testing Algorithm

- What is a "good" pen testing algorithm?
 - Show no pen-testing algorithm can do better (or only marginally better)- later
 - Show even god with an "ink-o-meter" can do only marginally better

Back to Example

- 2 pens
 - 30 minutes ink wp ½
 - 1 minute ink wp ½
- Select 1 pen
- We got: 21.75
- God:
 - Wp ½ x ½: both pens have 1 minute ink
 - Wp (1 ½ x ½): at least 1 pen has 30 minutes ink
 - Average: $\frac{1}{2} \times \frac{1}{2} \times 1 + (1 \frac{1}{2} \times \frac{1}{2}) \times 30 = 22.75$

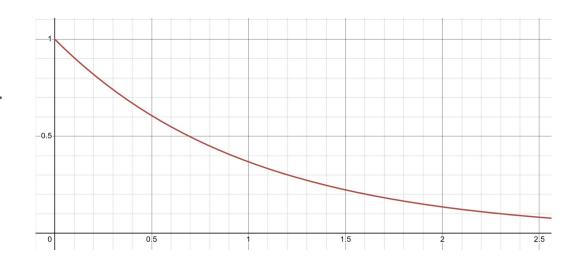
Back to Example

- 2 pens
 - 30 minutes ink wp ½
 - 1 minute ink wp ½
- Select 1 pen
- We got: 21.75
- God:
 - Wp ½ x ½: both pens have 1 minute ink
 - \circ Wp (1 $\frac{1}{2}$ x $\frac{1}{2}$): at least 1 pen has 30 minutes ink
 - o Average: $\frac{1}{2} \times \frac{1}{2} \times 1 + (1 \frac{1}{2} \times \frac{1}{2}) \times 30 = 22.75$

Goal- Come Up with a "Good" Pen Testing Algorithm

- What is a "good" pen testing algorithm?
 - Show no pen-testing algorithm can do better (or only marginally better)- later
 - Show even god with an "ink-o-meter" can do only marginally better

- Want to say Us/God ≥ ? for any distribution D₁xD₂x ... x D_n
- Residual ink/Original ink


Example-2: The Exponential Distribution

- 2 pens
 - Ink levels from the exponential distribution
- Select 1 pen

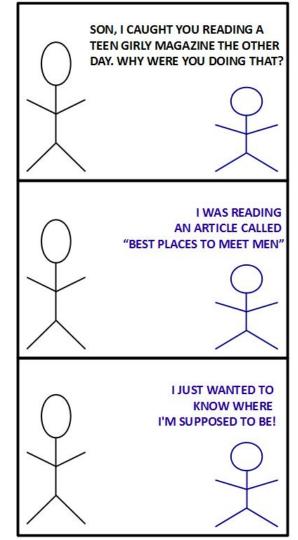
- Exponential distribution:
 - \circ Pr(Q > t) = $e^{-\lambda t}$

Exponential Distribution at $\lambda = 1$

- $Pr(Q > t) = e^{-\lambda t}$
- Quantity always greater than zero
- Approaches zero
 probability as quantity
 goes to infinity

- Why care about such a question?
 - Exactly captures burnt-ink
 - Is there t more units of ink after using up T units of ink

- $Pr(Q > T+t) = e^{-\lambda(T+t)}$
- Normalize, so that Pr(Q > T) = 1


- $Pr(Q > T+t) = e^{-\lambda(T+t)}$
- Normalize, so that Pr(Q > T) = 1
- $Pr(Q > T+t \mid Q > T) = Pr(Q > T+t) / Pr(Q > T)$

- $Pr(Q > T+t) = e^{-\lambda(T+t)}$
- Normalize, so that Pr(Q > T) = 1

•
$$Pr(Q > T+t \mid Q > T) = Pr(Q > T+t) / Pr(Q > T)$$

= $e^{-\lambda(T+t)} / e^{-\lambda T} = e^{-\lambda t}$

- Pr(Q > T+t | Q > T)- what is the probability of at least T+t units of ink, if promised there is at least T units of ink?
- $Pr(Q > T+t | Q > T) = e^{-\lambda t}$
 - Equals Pr(Q > t)
- Even if ink has not dried up after T units of time, we learn nothing about the distribution of remaining ink!
 - Testing gives very little information

Chapter-2: Economics

- Selling a litre of petrol
 - My value: travel from Chennai to Coimbatore to teach in RAMTP- Rs 100

- Selling a litre of petrol
 - My value: travel from Chennai to Coimbatore to teach in RAMTP- Rs 100
 - Value for a professional driver: tourism charges by showing around tourists- Rs 120

- Selling a litre of petrol
 - My value: travel from Chennai to Coimbatore to teach in RAMTP- Rs 100
 - Value for a professional driver: tourism charges by showing around tourists- Rs 120
 - Value for the Ambanis: run a generator in their plant and produce profit from production- Rs 135

- Selling a litre of petrol
 - My value: travel from Chennai to Coimbatore to teach in RAMTP- Rs 100
 - Value for a professional driver: tourism charges by showing around tourists- Rs 120
 - Value for the Ambanis: run a generator in their plant and produce profit from production- Rs 135
- Can allocate anyone at most half a litre of petrol
 - Nobody has a one litre bottle

Surplus = Total utility for selling the litre of petrol

- Eg: Sell all three of us ⅓ litres of petrol and charge each of us Rs 110 per litre.
 - My utility: $\frac{1}{3}$ x (100-110) = -3.333
 - o Driver's utility: $\frac{1}{3}$ x (120-110) = 3.333
 - Ambani's utility: ½ x (135-110) = 8.333

- Surplus = Total utility for selling the litre of petrol
- Eg: Sell all three of us ⅓ litres of petrol and charge each of us Rs 110 per litre.
 - My utility: $\frac{1}{3}$ x (100-110) = -3.333
 - o Driver's utility: $\frac{1}{3}$ x (120-110) = 3.333
 - Ambani's utility: $\frac{1}{3}$ x (135-110) = 8.333
 - O Auctioner's utility (revenue) = $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110

- Surplus = Total utility for selling the litre of petrol
- Eg: Sell all three of us ⅓ litres of petrol and charge each of us Rs 110 per litre.
 - \circ My utility: $\frac{1}{3}$ x (100-110) = -3.333
 - o Driver's utility: $\frac{1}{3}$ x (120-110) = 3.333
 - o Ambani's utility: $\frac{1}{3}$ x (135-110) = 8.333
 - Auctioner's utility (revenue) = $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110
- Surplus = $\frac{1}{3}$ x (100-110) + $\frac{1}{3}$ x (120-110) + $\frac{1}{3}$ x (135-110) + $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110

- Surplus = Total utility for selling the litre of petrol
- Eg: Sell all three of us ⅓ litres of petrol and charge each of us Rs 110 per litre.
 - \circ My utility: $\frac{1}{3}$ x (100-110) = -3.333
 - o Driver's utility: $\frac{1}{3}$ x (120-110) = 3.333
 - Ambani's utility: ½ x (135-110) = 8.333
 - Auctioner's utility (revenue) = $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110 + $\frac{1}{3}$ x 110
- Surplus = $\frac{1}{3}$ x 100 + $\frac{1}{3}$ x 120 + $\frac{1}{3}$ x 135

- My value: Rs 100, Driver's value: Rs 120, Ambani's value: Rs 135
- Can't sell more than half a litre of petrol to someone
- How to optimize surplus? Interesting for a Government, for eg.
 - Give half a litre each to Driver and Ambani
 - Charge everyone nothing
- More generally, optimize total value and charge nothing

Challenge

- I am angry at being left out
- I am also sneaky- when auctioneer asks me my value:
 - Answer 100 and be left out
 - Answer 200 and get half a litre petrol

- My happiness
 - $0 \frac{1}{2} \times (200 0) = 100$

Challenge

- I am angry at being left out
- I am also sneaky- when auctioneer asks me my value:
 - Answer 100 and be left out
 - Answer 200 and get half a litre petrol
- My happiness
 - \circ $\frac{1}{2}$ x (200 0) = 100
- Need to optimize surplus even when bidders are strategic

Ascending Price Auction (IPL Auction)

- Two identical items
 - Initially price = 0, everybody has hands up
 - Price keeps increasing bit by bit
 - Bidders drop down hands when price crosses their value
 - Stop increasing price until there are only two hands up

Ascending Price Auction (IPL Auction)

- Two identical items
 - Initially price = 0, everybody has hands up
 - Price keeps increasing bit by bit
 - Bidders drop down hands when price crosses their value
 - Stop increasing price until there are only two hands up

- Give item to the two people with hands up
- Charge the last price from the two people

What Should Bidders Do?

- Stop before price reaches their value?
 - No: still profitable if the auction ends

What Should Bidders Do?

- Stop before price reaches their value?
 - No: still profitable to keep going

- Keep going after price crosses their value
 - No: will pay more than value if they end up winning

What Should Bidders Do?

- Stop before price reaches their value?
 - No: still profitable to keep going

- Keep going after price crosses their value
 - No: will pay more than value if they end up winning

 Optimal strategy to keep hands up until your price reaches your value and drop hands after

Funky Ascending "Hands Up" Auction- Deferred Acceptance Auctions [Milgrom and Segal 2014]

- Need not increase price uniformly for all bidders
- Odd numbered rounds- increase price for odd numbered agents by ε
- Even numbered rounds- increase price for even numbered bidders by 2ε
- What property does such an auction satisfy?
 - Who knows? But, why not?

Consumer Surplus

Part of surplus that comes from consumers

Consumer Surplus

- Part of surplus that comes from consumers
- My value: Rs 100, Driver's value: Rs 120, Ambani's value: Rs 135
- Charge Driver and Ambani Rs 110 per litre and allocate both half a litre
 - My utility: 0
 - Driver's utility: $\frac{1}{2}$ x (120-110) = 5
 - \circ Ambani's utility: $\frac{1}{2}$ x (135-110) = 12.5
- Consumer surplus = 5 + 12.5 = 17.5

Why is Consumer Surplus Interesting?

- What if the payment cannot be transferred to the auctioneer?
 - What is bidders make payment in time? Wait in line for an hour to get access
 - Time cannot be transferred to the auctioneer

Why is Consumer Surplus Interesting?

- What if the payment cannot be transferred to the auctioneer?
 - What is bidders make payment in time? Wait in line for an hour to get access
 - Time cannot be transferred to the auctioneer

 Charge packets while routing them on the internet by slowing down delivery [Hartline and Roughgarden 2008]

Consumer Surplus and Pen Testing [AG and Hartline 2023]

Auction Quantity	Analogous Pen Testing Quantity
Surplus	Original ink quantity
Payment	Ink Burnt
Consumer Surplus = Surplus - Revenue	Residual Ink = Original ink quantity - ink burnt

 Ascending "hands up" prices similar to burning ink drop by drop

Consumer Surplus and Pen Testing [AG and Hartline 2023]

Auction Quantity	Analogous Pen Testing Quantity
Surplus	Original ink quantity
Payment	Ink Burnt
Consumer Surplus = Surplus - Revenue	Residual Ink = Original ink quantity - ink burnt

 Pen testing same as designing consumer surplus optimizing "hands up" auction!

Consumer Surplus and Pen Testing [AG and Hartline 2023]

Auction Quantity	Analogous Pen Testing Quantity
Surplus	Original ink quantity
Payment	Ink Burnt
Consumer Surplus = Surplus - Revenue	Residual Ink = Original ink quantity - ink burnt

- Pen testing same as designing consumer surplus optimizing "hands up" auction!
- Residual ink/original ink = optimal consumer surplus/optimal surplus

Chapter-3: Mathematics

A mathematician is asked by a friend who is a devout Christian: "Do you believe in one God?" He answers: "Yes - up to isomorphism."

 $\text{max}_{(x, \, p)} \, \text{min}_{\text{all distributions D}} \, \text{avg. consumer surplus/ optimal avg.}$ surplus

such that

Truthful bidding is the optimal strategy for all bidders i

Truthful Bidding

- x_i(.) be the average allocation to bidder i, averaged over the values of other bidders
- p_i(.) be the average payment of bidder i, averaged over the values of the other bidders

We want user with value v to bid v and not b.

$$v.x_{i}(v) - p_{i}(v) \ge v.x_{i}(b) - p_{i}(b)$$

 $\text{max}_{(x, \, p)} \, \text{min}_{\text{all distributions D}} \, \text{avg. consumer surplus/ optimal avg.}$ surplus

such that

- $v.x_i(v) p_i(v) \ge v.x_i(b) p_i(b)$
 - o for all v, b, i

Avg. Surplus

- Let y be the surplus optimal mechanism
- Contribution of bidder i to the surplus when value is v
 - \circ $V.y_i(V)$
 - Avg. surplus from $i = \sum_{v} Pr(v_i = v) \times v.y_i(v)$
- Avg. surplus = $\sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$

such that

- $v.x_i(v) p_i(v) \ge v.x_i(b) p_i(b)$
 - o for all v, b, i
- y is the surplus optimal mechanism

Avg. Consumer Surplus

- Consumer surplus = surplus payment
- Avg. Consumer surplus = avg. surplus avg. payment

$$= \sum_{i} (\sum_{v} Pr(v_{i} = v) \times v.x_{i}(v) - \sum_{v} Pr(v_{i} = v) \times p_{i}(v))$$
$$= \sum_{i} \{\sum_{v} Pr(v_{i} = v) \times [v.x_{i}(v) - p_{i}(v)]\}$$

$$\max_{(x, p)} \min_{\text{all distributions D}} \sum_{i} \{ \sum_{v} \Pr(v_{i} = v) \times [v.x_{i}(v) - p_{i}(v)] \} / \sum_{i} \sum_{v} \Pr(v_{i} = v) \times v.y_{i}(v) \}$$

such that

- $v.x_i(v) p_i(v) \ge v.x_i(b) p_i(b)$
 - o for all v, b, i
- y is the surplus optimal mechanism

For all Distributions D

- $\sum_{v} Pr(v_i = v) = 1$
- $Pr(v_i = v) \ge 0$

```
\max_{(x, p)} \min_{i, Pr(vi = 1)} \sum_{i} \{ \sum_{v} Pr(v_i = v) \times [v.x_i(v) - p_i(v)] \} / \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v) \}
```

such that

- v.x_i(v) p_i(v) ≥ v.x_i(b) p_i(b)
 o for all v, b, i
- y is the surplus optimal mechanism
- $\sum_{v} Pr(v_i = v) = 1, Pr(v_i = v) \ge 0$

y is the surplus optimal mechanism

- Suppose the optimal average surplus is 5
 - O What does that mean?
- $5 \ge \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$
 - for all allocation rules y

- Clearly
 - $0 \quad 6 \ge \sum_{i} \sum_{v} Pr(v_{i} = v) \times v.y_{i}(v)$
 - $7 \ge \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$ and so on

y is the surplus optimal mechanism

- Suppose the optimal average surplus is 5
 - O What does that mean?

- $5 \ge \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$
 - for all allocation rules y

5 is the smallest real number t such that

$$t \ge \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$$
 for all allocation rules y

y is the surplus optimal mechanism

- Suppose the optimal average surplus is t
 - O What does that mean?

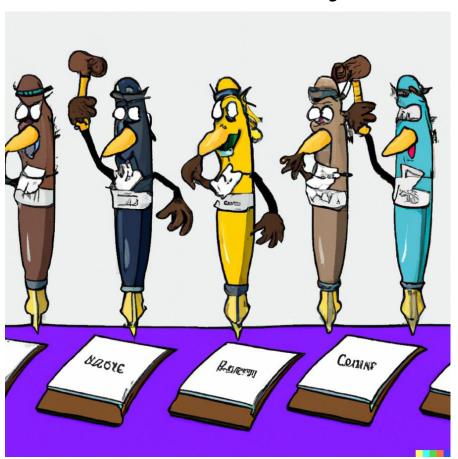
- min t such that
 - $t \ge \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$ for all allocation rules y

```
\max_{(x, p)} \min_{i, Pr(vi = ), t} \sum_{i} \{ \sum_{v} Pr(v_{i} = v) \times [v.x_{i}(v) - p_{i}(v)] \} / \sum_{i} \sum_{v} Pr(v_{i} = v) \times v.y_{i}(v)
```

- such that
- v.x_i(v) p_i(v) ≥ v.x_i(b) p_i(b)
 o for all v, b, i
- $t \ge \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$ for all allocation rules y
- $\sum_{v} Pr(v_i = v) = 1, Pr(v_i = v) \ge 0$

```
\begin{aligned} \text{max}_{(x, p)} & \text{min}_{i, Pr(vi = ), t} \\ & \sum_{i} \left\{ \sum_{v} \text{Pr}(v_{i} = v) \times [v.x_{i}(v) - p_{i}(v)] \right\} / \sum_{i} \sum_{v} \text{Pr}(v_{i} = v) \times v.y_{i}(v) \end{aligned}
```

such that


- $v.x_i(v) p_i(v) \ge v.x_i(b) p_i(b)$ \circ for all v, b, i
- $t \ge \sum_{i} \sum_{v} Pr(v_i = v) \times v.y_i(v)$ for all allocation rules y
- $\sum_{v} Pr(v_{i} = v) = 1, Pr(v_{i} = v) \ge 0$

An optimization problem with a bunch of functions as constraints- ready for calculus on steroids!

Turns out [AG and Hartline 2023]

- Residual ink/Original ink:
 - c log n for some constant c for knapsack, k out of n pens
 - o log² n for more general (downward closed) constraints

Takeaway

Thank you!

aadityanganesh@princeton.edu